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Abstract--Mechanical spinning of fluid filaments was used to generate an extensional flow, in 
which rheological measurements were obtained for a Newtonian fluid, two aqueous polymer 
solutions, and two fluid suspensions of rod-shaped particles. The tensile stress was determined by 
measuring the tensile force of the fluid filament while the kinematics were determined from photo- 
graphic measurement of the filament profile and the assumption of a flat velocity profile. The 
measured tensile stresses for the Newtonian fluid matched predicted stresses, thereby confirming 
the validity of the experimental technique. 

The spinning behavior of each polymer solution could be correlated as stress versus extension 
rate. The apparent "spinning viscosity" increased with increasing rate of extension, in contrast 
to shear-thinning behavior in viscometric flow. For the fluid suspensions, the presence of rod-shaped 
particles increased the apparent viscosity far more in extensional flow than in shear. Tensile stresses 
calculated from a theoretical formula for suspensions proposed by Batchelor agreed rather well 
with experiment. Some general criteria for the interpretation of the spinning experiment are 
proposed, and some microrheological implications of the present findings are discussed. 

1. I N T R O D U C T I O N  

The importance of the so-called extensional flows to the rheology of non-Newtonian 
fluids has been discussed frequently in recent literature (Ziabicki 1967; Dealy 1971; 
Cogswell 1972). On the one hand, there is considerable motivation for practical rheological 
tests based on such flows, insofar as they occur in industrial processing operations such as 
fiber spinning and film.forming. 

On the other hand, there is good reason to believe that measurements of fluid behavior 
in such flows is highly relevant to theoretical rheology, not only as a guide for formulating 
constitutive equations, but also as a means of elucidating the microrheology of fluids. 

In the language of continuum mechanics, a history of extensional motion at a material 
point is characterized at any time t by a rate of deformation tensor which, for all past 
times t' < t, is given by 

E(t') : ~l(t')ele 1 + ~2(t')e2e2 + ~3(t')e3e3 [1.11 

relative to an appropriate orthonormal basis el (i = 1, 2, 3) fixed in the material. The 
~i (i = 1, 2, 3) denote the principal rates of deformation, and whenever they are independent 
of the time t' the motion is designated as steady extensional. Of course, for incompressible 

t Present address: Drexel University, Department of Chemical Engineering, Philadelphia, PA 19104, U.S.A. 
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fluids, or for isochoric motions, only two of the three ki are independent, since 

~1 + ~2 + ~3 = 0. [1.21 

A further special case of p~trticular interest here is that of"simple" or "uniaxial" extension, 
defined by 

~2 = E3 ~-" -k t /2 ,  kt = k(t') > 0 [1.3] 

for which we may, without ambiguity, designate k as the "extension rate".t 
As a further point of interest, we recall that steady extensional motions always give rise 

to an exponentially large elongation of certain lineal fluid elements as t' - - ~ .  It is this 
kinematical property which characterizes a subset of the so-called "motions of constant 
stretch history" (Truesdell 1966). It also accounts for the mathematical predictions of an 
extensional "catastrophe", by numerous phenomenological models for viscoelastic fluids, 
wherein there exist singularities of infinite stress at finite levels of the extension rates. 

As for the plausibility of such a phenomenon in real fluids, we tend to share the view of 
Tanner (1968) and believe that such predictions should be regarded as mathematical 
artifacts, which reflect limitations on the fluid models in question. It is recognized that 
predictions of large but finite tensile stresses in extension may be qualitatively correct for 
many non-Newtonian fluids, and this appears to have been confirmed by the work to be 
presented here and previously by certain other experimental studies (Metzner & Metzner 
1970). Moreover, the occurrence of large stresses is plausible when viewed from the stand- 
point of molecular- or microrheology, because the characteristic absence of vorticity, in 
steady or quasi-steady extensional motion, together with the exponential stretching of fluid 
elements, provides in principle an effective mechanism for order or alignment of fluid 
microstructure. This is especially likely in solutions or suspensions, respectively, of exten- 
sible or elongated macro-molecules or of particles in viscous fluids, as is suggested by the 
classical hydrodynamic theories for the motion of deformable or elongated bodies suspended 
in a Newtonian fluid. 

Recent improvements in slender body theory for the Stokes-flow regime, and the 
resultant calculations for suspensions of rigid rod-like particles (Batchelor 1971), yield 
predictions of extremely large stresses in simple extension. 

These considerations provide much of the motivation for the present experimental work, 
whose original purpose was two-fold: 

(a) to develop further a rheological test for studying the mechanical behavior of liquid 
filaments subjected to simple extension; 

(b) to make measurements on high molecular weight polymer solutions as well as on 

suspensions of rod-like particles in a Newtonian fluid, a system for which some 
theoretical models are available. 

Since we were particularly interested in measurements that would be applicable to 

t It is desirable to distinguish between the cases ~1 > 0 and kl < 0, the latter being more appropriately termed 
"uniaxial compression",  a special, axially symmetric form of "biaxial extension" (k~ < 0, ?,2 > 0,/:3 > 0). 
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liquids of moderate shear viscosity, the kind of tensile tests appropriate to solids and highly 
viscous liquids, such as that used by Trouton (1906) in his classic experiments, and later 
variants due to Cogswell (1972) and Meissner (1972), were not practicable. Hence, some 
modification of the spinning technique used for formation of synthetic fibers quite naturally 
suggested itself. 

At the inception of the present work, the only reported measurement of this type on 
polymer solutions appeared to be that of Nitschmann & Schrade (1948), who did not, 
however, make sufficiently detailed or precise measurements to permit estimation of local 
stress and extension rate at various points along a liquid filament. During the course of 
our work, a report by Zidan (1969) on similar measurements appeared and this work is 
discussed below. Since then, several other measurements of this same type have been 
reported for polymer melts, but these will not be discussed in detail here. 

2. P R I N C I P L E S  F O R  I N T E R P R E T A T I O N  OF T H E  M E A S U R E M E N T  

There have been several analyses given of the mechanics of isothermal filament spinning 
for various kinds of fluids (Clarke 1968; Matovich & Pearson 1969; Slattery 1966). In the 
interest of clarifying certain fundamental questions relating to the interpretation of data, 
it seems worthwhile to recall the basic notions underlying our treatment of filament 
rheology and dynamics. 

2.1 R h e o l o g i c a l  a spec t s  

We make the usual constitutive assumptions for an isotropic incompressible fluid, e.g. 
of the type defined by Noll's (1958) simple-fluid theory. Then the instantaneous stress at a 
fluid particle subjected to the simple extension of [1.13 has the form (Weinberger 1970), 

S(t) = 2 z ( t ) e l e l  - ½z(t)(e2e 2 + eae3) - pI [2.1] 

where p is a rheologically indeterminate pressure, and 

[(;)l • ( t )  - -  S l x ( t )  - s 2 2 ( t )  - S i x ( t )  - s33 ( t )  = ~ ~ , [2.21 
ao 

the (axial-radial) principal stress difference, is a functional on the extension rate ~(t'). 
For steady extension (Coleman & Noll 1962), [2.2] reduces to a (steady, material) function 
of L 

= rr(~) = r/T(~)L [2.3] 

say where ~/r(~) is the so-called "Trouton" or tensile viscosity. 
For fluids with "fading" memory (Coleman & Noll 1961, 1962), one has in the Newtonian 

limit, ~ ~ 0, that ~/T --* 3/~, where # is the (Newtonian limit of the) shear viscosity. For general 
fluids of this type, however, r/T is not otherwise simply related to the viscometric material 
functions. 

For an unsteady extension, characteristic of a spinning filament, one does not in general 
expect a relation of the form [2.3] to exist between the instantaneous values of extension 
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rate ~(t) and the stress z(t). Indeed, such a relation would be expected to obtain only in the 
following special motions: 

(I) for all quasi-steady extensions (retarded motions), corresponding to the limit of small 
values of some characteristic time ratio (or Deborah number), based on the strain 
acceleration and a relaxation time for the fluid; or 

(II) for a monogenic family of extensions, i.e. extensions all having essentially the same 
history. 

These ideas can be illustrated, as in figure 1, by a phase-plane representation of a 
dimensionless extension rate 

c~ = Zo~ ( > 0), [2.4] 

versus the magnitude of a dimensionless strain acceleration (or Deborah number squared), 

dot 
- -  = ;~g~, E2.5] 
dO 

where ~ = d i / d t ,  O = t / 2  o, 

and 2o is a characteristic relaxation time for the fluid. The plot is essentially then a flow- 
diagnostic diagram of the type proposed by Pipkin (1972). 

Extensions of type (I) may be thought of as being all those curves of ct vs de/d0 that lie 
in a region Idct/d0l << 1 near the a-axis. In contrast, a monogenic family of extensions is 
represented by a single curve, e.g. (II) on the diagram, to which has been attributed the 
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I$ / 

/ 

/ 

dO 

Figure 1. '~Flow-diagnostic", phase-plane representation for (isothermal) spinning, l --Region of 
quasi-steady extension. II--Monogenic family of spinning motions, all having the same history of 

extension rate. 
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general shape one might expect for a spinning process. Thus, in terms of the original vari- 
ables ~, ~, a sufficiently smooth monogenic family of extensions is represented by the 
second-order differential equation 

= G(~) [2.6] 

where a given function G is the generator of the family.t It is well-known that the general 
solution of [2.6] can be represented by a mapping of ~(t) into ~(t') as 

~(t') = Hi t '  - t, ~(t)], [2.7] 

where the function H is uniquely determined by the generator G and t, t' are arbitrary times. 
One of the major factors determining the suitability of the spinning experiment as a 

rheological test is the reproducibility or controllability of the kinematics. (Generally, one 
demands of any theological test that the history of deformation be both measurable and 
easily parameterized, the latter of which, in its simplest interpretation, implies that time 
can be eliminated from the description of the experiment.) 

An important question, therefore, is whether the motion in a set of spinning experiments 
with a given fluid falls into category (I) or (II) above. In case (I), quasi-steady motion, one 
obtains the relation [2.3]; i.e. the stress is determined by the steady-state material function. 

In case (II), it follows from [2.2], [2.6] and [2.7] that the instantaneous stress is given 
formally by 

z(t) = z~[~(t)]. [2.8] 

In this restricted sense, z~ is a valid material property, determined by the form of G in [2.6], 
but not generally identical with the steady-stress function ~r of [2.3]. 

The experimental results to be presented later show that for the fluids and conditions 
studied here, the spinning motion appears to represent a particularly reproducible history, 
insofar as it is possible to correlate instantaneous stress and extension rate for different 
spinning conditions. 

2.2 Kinemat ica l  and dynamical  aspects 

In a spinning motion forces from gravity, inertia and surface tension contribute to the 
tensile stress. To distinguish the material's rheological response to the extension rate, it is 
necessary to separate the effects of these forces. 

On account of the free-surface boundary conditions, application of the full equations of 
motion yields complex equations, requiring difficult techniques (Clarke 1968; Matovich 
& Pearson 1969) to achieve even approximate solutions. However, the dynamical equations 
simplify considerably whenever the radial variations in axial velocity and tensile stress can 
be neglected, which requires the assumption of a flat velocity profile, hence, a radially 
homogeneous extension. This procedure, as employed by G. I. Taylor (Brown 1961) for a 
falling sheet of fluid, can be justified to some extent as an approximation corresponding to 
the first-order term in a perturbation series of the type proposed by Matovich & Pearson 
(1969). 

t This  is a genera l i za t ion  of an idea discussed by Kanel  (1970), cf. the Acknowledgemen t .  
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The resulting steady-state axial momentum balance and continuity equation combine to 
yield the equations for axial velocity u(x) and extension rate: 

d (r/t0 p g +  p u + [2.9] 
u dx dx 

with k(t) = du/dx(x) ,  dt  = dx/u ,  and d/d t  = u(d/dx). 

Here gravity, acceleration and surface tension a are included but both inertial and drag 

forces from the surrounding medium are neglected.t 
In the present work we shall employ the direct numerical quadrature of [2.9] to deduce 

the stress ~ from observations of the filament diameter by means of the integral 

where, in terms of filament radius R(x)  and volumetric efflux, Q, 

u = Q/nR2(x) ,  and where c = Zo/Uo = Fo/Q, a constant, [2.11] 

is the stress/velocity or force/efflux ratio, at some reference point x = 0 on the filament. 
However, it is worth commenting briefly on (2.9], viewed as differential equation for 

predicting u(x) for a given fluid. 
Clarke (1968) has solved this equation analytically for the special case of a Newtonian 

fluid with negligible surface tension. For highly viscous Newtonian fluids, where surface 
tension, gravity and inertia can all be neglected, one has constant-force spinning with 

= cu, F(x ) /Q = Fo/Q = c, {2.12] 

and the solution of [2.9] yields for the velocity u(x )a  simple exponential function of position. 
The theoretical problem of solving [2.9], subject to the appropriate end or boundary 

conditions, has been discussed by Slattery t1966); Ziabicki (1967); M atovich & Pearson 
(1969). The effect of die or eductor prehistory is especially important in this context. Of 
course, for an arbitrary fluid model, with general rheology of the form [2.2], nothing very 
definite can be said without imposing certain special assumptions on the class of kinematics 
(Slattery 1966). Ultimately, however, one must verify some reasonable degree of compati- 
bility with the dynamics, as described e.g. by [2.9] and with real end conditions. 

In this regard, the special case of constant-force spinning, [2.12] is practically and theor- 
etically important. Here, by means of [2.9] and [2.12], one finds that 

= dz /d t  = ri:, [2.13] 

which is equivalent to 

z(t) = r(s)exp ~(s')ds' , or r(t) = r(s)A(s)/A(t) ,  [2.14] 

t The corresponding equation, [3.56] of Weinberger (1970), shows an erroncous factor of 4 in thc surface- 

tension term. 
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where t and s are arbitrary values of the time variable and A(t) denotes (local) cross-sectional 
area of the filament. 

The relations [2.13] or [2.14] can be regarded as general integrals or invariants of this 
particular spinning motion, either of which, together with the constitutive relation [2.2] 
and an appropriate end condition, provides the full equations of motion governing the 
filament behavior. 

Thus, in the case (I) of Section 2.1, quasi-steady motions where [2.3] holds, one obtains 
the governing differential equation, in an implicit form, as 

75 = ZT('~/"C ). [ 2 . 1 5 ]  

If the motion cannot be considered as quasi-steady, one obtains instead a functional 
relation from [2.13] and [2.2] whose form indicates that, for a given material (or con- 
stitutive functional), all constant-force spinning experiments are members of the same 
monogenic family of extensions. The equation of motion reduces then to the analog of [2.15], 

z = zG('~/z), [2.16] 

and, incidentally, the generator G of [2.6] is determined by the functional relation 

~ (~ )  
G(~) = dzG(~)/d~" [2.17] 

Of course, the latter cannot be made more definite without a specific constitutive equation. 
The above result can perhaps be clarified by considering a specific constitutive model, 

in the form of a generalized Maxwell-Oldroyd fluid (cf. Zidan 1969), reduced to a form 
appropriate to simple extension, say 

where the relaxation time 2 and the Trouton viscosity r/r are assumed to depend on 
extension rate k. It follows from [2.13] and [2.18] that for all constant-force spinning motions 

or for ~ > 0, 

= r.(~) = rT¢)/[I + ,~(~)~], 

def TG ~T(~ ) 
- [ 2 . 1 9 ]  ~hp~- ~ 1 +2(~)~ 

where r/sp~ is an (apparent) spinning viscosity.t 
The example just considered illustrates the general point that for constant-force spinning 

one can correlate instantaneous (or local) stress and extension rate along the filament 
but, at the same time, cannot distinguish between quasi-steady and unsteady (i.e. purely 
viscous and elasticoviscous) behavior. Also, one can say that the stress or the spinning 
viscosity will be less than the steady stress or Trouton viscosity, for a fluid whose behavior 

t There is, of course, some license taken  here in using the te rm viscosi ty to describe a stress which involves 
elast ic  as well as viscous or d i s s ipa t iona l  response.  
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is approximated by [2.18] with 2 > 0. We suspect that this result might also hold for a 
much wider class of fluid models. 

The interesting general questions remain as to whether there exists any wider class of 
spinning motions for which instantaneous stress and extension rate can be correlated and, 
if so, what relation exists between spinning viscosity and Trouton viscosity. 

The foregoing considerations are thought to be crucial to the interpretation of the 
spinning experiment, where material rheology and dynamics interact to determine the 
type of rheological test one obtains for a given material. Such a test, therefore, may not be 
kinematically reproducible for different materials, or even for a given material with 
different spinning conditions. 

These questions will be reconsidered below, as they pertain to the experiments of the 
present study. 

3. E X P E R I M E N T A L  M E T H O D  A N D  F L U I D  C H A R A C T E R I Z A T I O N  

3.1 Fluids employed 

The test fluids consisted of two aqueous polymer solutions, one silicone oil, and two fluid 
suspensions. The polymer solutions exhibited marked elastic and shear-thinning behavior 
and the silicone oil appeared Newtonian. The fluid suspensions contained short lengths 
of fiber-glass suspended in Newtonian fluids. 

The first polymer solution, containing 1.5 weight-per cent Separan AP30t dissolved in 
a 1:1 (by weight) glycerol-water solvent, was chosen for several reasons. Its behavior 
under dynamic and steady shearing conditions had been studied previously (Huppler, 
Ashare & Holmes 1967) and, in addition to possessing the desired order-of-magnitude 
zero-shear viscosity of 3000 P, it exhibited the usual shear-thinning and gradual stress- 
relaxation effects. The second polymer solution was prepared by dissolving 3.03 weight- 
per cent Polyox WSR-301 + in a solvent composed of 1:2 glycerol-water plus 11 per cent 
isopropanol. (Isopropanol is added to enhance the stability of the Polyox solution by 
retarding the auto-oxidation of the polyethylene oxide.) The Polyox solution also exhibited 
shear-thinning and gradual stress relaxation effects but possessed a zero-shear viscosity 
five times that of the Separan. (We recall that the purpose of the glycerol as an aqueous 
polymer-solution additive is to increase the viscosity of the solvent and thereby to enhance 
the elastic properties of the solutions.) 

The silicone oil is Dow Corning 210 fluid§ whose shear viscosity, determined with a 
falling-ball viscometer, is 1025 P. The Newtonian fluids used in the fluid suspensions were 
the same silicone oil mentioned above and Indopol II, with a shear, viscosity of 205 P. The 
suspended particles of fiber-glass measured 3.5 #M in diameter by 200 pM long; both 
suspensions contained 1.3 volumetric-per cent particles. 

+ A polyacrylamide. MW 2 3 million, made by Dow Chemical Co. 
+* A polyethylene oxide MW 4,000,000, made by Union Carbide Co. 

A dimethylpolysiloxane made by Dow Corning Co. 
[[ A polybutene, MW 750, made by American Oil Co. 
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Shear properties of the polymer solutions were measured with a Weissenberg rheogonio- 
meter, Model R-16. These properties included apparent shear viscosity and stress relaxation 

upon cessation of shear, the gradual stress decay was used as an approximate measure of 
relaxation time. The shear viscosities of the fluid suspensions were measured with a Brook- 
field viscometer. 

3.2 Extensional-flow apparatus and tests 

With the extensional-flow apparatus, a spinning motion was obtained by extruding the 
test fluid through a circular nozzle and continuously winding up the fluid filament tan- 
gentially onto a rotating disk (figure 2). The disks used were 3.2 mm thick and either 
38.1 or 50.8 mm in diameter. Rotation speeds ranged from 15 to 72 rev/min. The fluid, 
apparently held to the disk by surface tension, was scraped off with a doctor blade positioned 
half a revolution around from the contact point. The nozzle was rfiounted on a torsion bar 
so that the deflection of the nozzle tip, detected with a position transducer, provided a direct 
measure of the tensile force in the filament near the nozzle. The tip of the nozzle was 
approximately 120 mm from the torsion bar. A deflection of 10 -2 mm corresponded to a 
typical force of 940 dyn. The precision of the force measurement was approximately 
5 per cent. A syringe pump delivered the fluid at a constant flow rate of 24.7 or 74.4 mm3/sec. 
Three different nozzle diameters, 1.6, 2.5 and 3.6 mm, respectively, were tried, in an attempt 
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Figure 2. Schematic diagram of spinning apparatus used in this study. 
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to determine experimentally whether this was a significant variable. With the fluids studied, 
no effects of diameter could be detected. Calculations (Weinberger 1970) showed that the 
temperature rise from viscous dissipation of energy in the spinning threadline could be 
neglected. 

The principal experimental variables were: 

length of the fluid filament: 
wind-up speed; 
volumetric flow rate; 
die or nozzle diameter. 

Overall fluid filament lengths were varied from 60 to 170 mm and rates of extension were 
varied from 0.4 to 10 sec- 1. 

Filament diameters, measured from photographs of the threadline, and measured 
efflux rates provided local velocity values. The assumption of a flat velocity profile was not 
verified directly in the present work, since axial velocities at various radial positions were 
not measured. However, the speed of small bits of saw-dust placed on the surface of the 
filaments were measured and found to agree, within the 10 per cent experimental accuracy 

of the saw-dust measurement, with those speeds calculated from the diameter measure- 
ments (Weinberger 1970). (Unfortunately, this is not a very stringent test for the absence 
of radial gradients.) 

Measurements of the tensile force completed the information necessary to specify the 
rheology of the spinning motion. The tensile force, as a function of position, was determined 
from the measurement of the overall tensile force at the nozzle, essentially by means of 
[2.10]. The integration was accomplished stepwise, using as steps the actual intervals 
between diameter measurement, intervals ranging from 2 to 8 mm. Typically, each filament 
was divided into 20 increments, so that each run yielded 20 pairs of numbers, each pair 
consisting of the local tensile stress and the local extension rate. 

At high rates of extension the tensile stress measurement was relatively more accurate 
than the extension-rate measurement. The reason for this was that the higher extension 
rates were achieved in the region where the filament was thinner and where a small change 
in diameter could correspond to a high rate of extension. Consequently, the percentage 
uncertainty of most of the extension rate values reported here was estimated to be 30 per cent, 
while that of the tensile stress was roughly 5 per cent. (Tensile-stress data from the lower 
region of the filament during nearly free-fall conditions were much less accurate, however, 
and these data were not included here but are available in Weinberger 1970.) 

It should be emphasized in this context, that we employed finite-difference differentiation 
of diameter data, without any attempts to smooth data, by previously curve fitting or other 
such devices. In this sense, the interpretation of data was relatively direct and free of analytical 
artifact. In this regard, we feel that there has perhaps not been enough attention given in the 
literature on spinning to the very difficult problem of obtaining accurate filament diameter 
measurements. 

As for filament stability in the present work, oscillatory variations in the filament 
diameter and the tensile stress could occasionally be observed. The onset of these oscil- 
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lations depended on the nozzle diameter and the flow rate and thus, could be associated 
with the physical dimensions of the apparatus and not merely the rheological response of 
the material. No attempt was made to study these oscillations, and measurements were 
made only under experimental conditions where the oscillatory behavior did not appear 
to be significant. We should also note that no elaborate precautions were taken to control 
the temperature of the spinning filament, but the ambient laboratory air temperature 
was nominally controlled at 25 (_+ 0.2)°C. 

3.3 Results of shear tests on polymer solutions 

The shear viscosity of the silicone oil varied less than 5 per cent, as the shear rate was 
increased from 10-2 to 20 sec- 1. Moreover, the shear stress decayed rapidly upon cessation 
of shear (half-lives of less than 0.01 sec) over the same range of shear rates. The constancy 
of viscosity and rapidity of stress relaxation satisfied us that the oil could be considered 
Newtonian at the shear rates of interest. 
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The Separan and Polyox solutions exhibited the usual marked non-Newtonian behavior, 
particularly with regard to shear-thinning and gradual stress-relaxation. Their shear 
viscosities exhibited typical power-law behavior, figures 3 and 4, and the power-law 
exponents for the two fluids were similar: -0.67 for Separan and -0.75 for Polyox. 

The elasticity of the Separan and Polyox solutions was also evident from the shear- 
relaxation tests. Starting from various shear rates, the stress decayed gradually upon 
cessation of shear. Although the stress-decay curves were not quite exponential with time, 
an approximate measure of the relaxation time was obtained by noting the time required 
for the shear stress to decay to 1/e of its steady value. This time period amounted to nearly 
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Figure 6. Apparent relaxation time (based on I/e decrement of shear stress after cessation of steady 
shear) vs shear rate for Polyox solution. 
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70 sec for both fluids at low shear rates, figures 5 and 6 and, as the shear rate increased, 
decreased to only 0.3 sec at a shear rate of 10 sec- t. By coincidence, the two fluids were 
quantitatively similar in their relaxation behavior. The similarity in shear properties 
(relaxation time and power-law exponent) will become more significant when we compare 
the solutions' behavior in extensional flow. 

The shear viscosity of the fluid suspensions was increased only slightly by the presence 
of the particles (13 per cent) for the silicone oil suspension, and (8 per cent) for the Indopol 
suspension (table 2). The suspension viscosities decreased by less than 3 per cent as the 
shear rate increased from 1 to 10 sec- 1. 

4. R E S U L T S  A N D  D I S C U S S I O N  O F  E X T E N S I O N A L  T E S T S  

4.1 Newtonian fluid 

Experimental tensile stress values for the silicone oil are presented in figure 7.* The slope 
of unity on the logarithmic plot shows the tensile stress proportional to the extension rate, 
a result expected for a Newtonian fluid. Moreover, the observed values for the tensile 
stress superpose upon the line predicted from the measured shear viscosity. Most of the 
data fell within 20 per cent of the predicted tensile stress. Such agreement with theory 
served to verify the capabilities of the experimental apparatus. 
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Figure 7. Compar ison of experimentally observed tensile stresses with those predicted from the 
shear viscosity of the Silicone fluid (solid line). 

* Figure 7 shows slightly better agreement with theory than a corresponding plot, figure (4.16) of Weinberger 
(1970): the latter involves a small but systematical computat ional  error. 
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4.2 Polymer fluids 

Figures 8 and 9 show the tensile stress-extension rate curves found for the viscoelastic 
fluids. The striking feature of each plot is the nearly straight-line relationship. This indicates 
a power-law increase of spinning viscosity with extension rate, in distinct contrast to the 
decrease of shear viscosity with increasing rate of shear. 

Since we know of no other work on polymer solutions which relates spinning viscosity 
directly to extension rate, we are not able to comment on the empirical soundness of the 
observed power-law dependence, other than to note simply that the representation 
sufficed here over a broad range of deformation rates, in extension as well as shear. The 
more striking and significant feature was the opposite type of dependence of viscosity 
upon deformation rate in spinning and in shear, as summarized schematically in figure,10 
and numerically in table 1. This illustrates the importance of the mode of deformation to the 
non-linear dependence of stress on deformation rate, although this observation suffers 
somewhat because of the comparison of rheological behavior for time-invariant kinematics 
(steady shear) with that for time-varying kinematics (spinning). However, recalling from 
Section 2.2 that the Trouton viscosity is likely to be greater than the spinning viscosity, 
we are inclined to speculate that, for systems with an increasing spinning viscosity, the 
difference in rheological behavior is likely to be even greater between the cases of truly 
steady extension and steady shear. 
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Figure 10. Comparison of observed apparent viscosity vs strain rate (shear rate or extension rate) 
for Separan and Polyox solutions in shear and extension (spinning). The broken lines - - -  for 
extension represent the "Trouton" asymptotes, based on the "zero-shear" viscosities of the solutions. 

Table 1. Summary of observed, power-law dependence of apparent viscosities (poises) of polymer 
solutions on strain rates (sec- 1). 

Solution ~shear Range of ~ ~&pL, Range of 

Separan 1.94 x 102(~) -° '6 .  0.1 -1000 2.82 x 104(~) °'485 0.4-8 
Polyox 7.0 x 102(~) -°-~5 0.03-300 2.10 x 105(~) 1724 0.4-2 

J.M.F., Vo|. I, No. 3--G 
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In a spinning filament the extension rate usually increases with distance from the nozzle. 
Therefore, on figures 8 and 9, points higher on the curve correspond to positions farther 
downstream on the filament. Each symbol refers to different experimental conditions-- 
different lengths, flow rates, wind-up speeds, and nozzle diameters. The single fit of all the 
data indicates, we feel, that none of these variables is significant. Those data for draw-ratios 
(velocity/nozzle efflux velocity) less than two correspond generally to the velocity-re- 
arrangement region near the nozzle and thus were excluded from the plots.* 

Most of our experiments on the polymer solutions resulted in a nearly constant-force 
spinning, as defined in Section 2.2 above. Thus, after corrections for inertia, gravity and 
surface tension, the spinning force (zA) was at least 80 per cent as large at the take-up 
disk as that at the nozzle, in roughly 80 per cent of the tests, and at least 90 per cent as 
large in 60 per cent of the tests. 

If we assume these fluids exhibit fading memory, whereby they become Newtonian at 
low rates of deformation, we can estimate the limiting Trouton viscosity (thrice the zero- 
shear viscosity) and the corresponding Newtonian asymptote, as displayed at the lower 
left-hand corner of each plot. Although the data certainly do not indicate strict Newtonian 
behavior at the lower extension rates, they do exhibit the expected numerical magnitudes. 

It is interesting to compare the behavior of the one viscoelastic fluid against the other. 
It may be recalled that the elastic behavior as determined from shear stress-relaxation 
experiments, was roughly the same for the two fluids; their relaxation times, at equivalent 
shear rates, were within 30 per cent of each other. Furthermore, although the apparent 
shear viscosity of the Polyox solution was from three to five times that of the Separan 
solution, the power-law dependence of the shear viscosity upon the shear rate was roughly 
similar (the shear viscosity decreased slightly faster with the Polyox solution, as the power 
-0.75 of shear rate vs -0.67 for the Separan). Except for the difference in the absolute 
value of viscosity, then, the two fluids exhibited nearly identical shear behavior.+ However, 
this quantitative similarity in behavior did not carry over to the spinning experiments. 
Here the "spinning viscosity" of the Separan solution increased with the 0.49 power of 
extension rate whereas that of the Polyox increased with the 1.72 power. This difference 
in behavior serves perhaps to emphasize the insufficiency of simple experiments on shear 
as a basis for predicting rheological response in spinning. 

Because of the fundamentally different behavior in shear and extension, one can not 
expect fluid models which were developed solely on the basis of shear tests, to provide 
reliable predictions of spinning behavior. Thus, for example, if one employs the rheological 
equation proposed by Spriggs (1965) with constants obtained for the Separan solution by 

* The data presented here represent all but two runs (No's. 47-30 and 47 32 of Weinberger 1970) from a 
total of 37. The two excluded runs, which as pointed out to us by Kanel (1970) show some departure from the 
other data of figure 8, both correspond to small strain rates and tensile forces and, a co-incidentally small 
camera magnification. The data from other runs (No's. 47-21, 53 1, 53-10 and 54-32, ibid.), corresponding to 
roughly the same conditions but with larger camera magnification, are included in figure 8. At any rate, all the 
raw data are available elsewhere (Weinberger 1970). 

? Since the normal stress viscometric functions were not measured, a complete characterization of the fluids' 
rheology in shear was not obtained. 
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Huppler, Ashare & Holmes (1967) the solution is predicted to have an infinite spinning 
viscosity at an extension rate of 5.7 x 10 -3 sec-1. This is approximately two decades 
lower than the extension rate for the inception of non-linear behavior, as observed in this 
work. Other existing models could also be considered, but none of the simpler ones was 
found to provide an adequate description of the present experimental results for both shear 
and extension (Weinberger 1970). 

We recall that spinning motion experiments with aqueous polyacrylamide solutions 
were also performed by Zidan (1969). Qualitatively, he observed different relationships 
between tensile stress and extension rate as the spinning conditions were changed, whereas 
we observed a unique relationship. A quantitative comparison of results cannot be made, 
however, since Zidan's experiments were different in the following respects: 

higher molecular weight polymer; 
higher extension rates; 
a constant or decreasing extension rate with increasing distance from the nozzle. 

The last of these may indicate that constant tensile force conditions were not realized in his 
experiments for had they been, one would infer a very implausible decrease of tensile stress 
with extension rate. The lack of constant tensile force could in turn account for the lack 
of a unique (or monogenic) deformation history in his experiments, which prevented Zidan 
from obtaining a unique material function for the polyacrylamide solution. 

4.3 Particle suspensions 

The suspended rod-shaped particles exerted a powerful effect on the extensional rheology 
of the fluid suspensions. At a concentration of only 1.3 volumetric-per cent, the spinning 
viscosity was increased approximately 10-fold over that of the suspending fluid. 

In figures 11 and 12 the tensile stress is plotted versus the extension rate.* The two principal 
features of both plots, as summarized in table 2, are: 

(1) a constant spinning viscosity (slope of unity); and 
(2) a nearly ten-fold increase in tensile stress over that of the suspending fluid alone. 

The constant viscosity was manifest shortly after the suspension exits the nozzle; the 
spinning viscosity reached a constant value after achieving draw ratios of only 2 to 2.3. 

Table 2. Summary of observed viscosities (poises) of suspending fluids and fluid suspensions. 

~shcar ~spin 
Fluid Without particles 1.3 vol per cent particles Without particles 1.3 vol per cent particles 

Silicone lO00 1130 3000 29,000 
Indopol 205 235 (615)t 5400 

~" Calculated as  3r/shear. 
* The scatter in data is much greater for the suspensions than for the polymer solutions. Since the suspension 

possessed a less smooth filament surface, the extension rate measurement was somewhat less precise. 
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This tended to indicate the efficacy of the extensional motion for quickly aligning the par- 
ticles with the flow. Moreover, additional extensional strain did not appear to further align 
the particles, since the apparent viscosity remained constant over the remainder of the 
filament. 

4.4 Implications for microrheology 
For the particle suspensions studied here, the 10-fold increase in tensile stress over that 

of the suspending fluid can be compared to the roughly 8 per cent increase in shear stress. 
Hence, the presence of the particles affects the suspension rheology far more in extensional 
flow than in shearing flow. This is not surprising if one realizes that a high degree of orien- 
tation of the elongated particles along the major axis of extension should result in a high 
tensile stress. 

Theoretically, this effect can be anticipated from a microrheological analysis according 
to a classical hydrodynamic treatment of suspensions of rod-shaped particles in a viscous 
fluid. Recently, Batchelor (1971) has given a fairly comprehensive analysis of the extensional 
flow behavior of elongated particle suspensions in the limits of dilute-suspension and close- 
particles conditions, and has given a formula for the tensile stress increase z e due to the 
particles. He has already noted that the suspensions used in our work satisfy neither the 
dilute-suspension nor the close-particle description, but fall between the two. He has also 
proposed the following: 

[ (4rc/9)Nl3 ] 
"re = ln(2l/Ro) -f 1~1 + -21/h) - 3/2 3/~, [4.1] 

where # is the viscosity of the (Newtonian) suspending fluid, N is the number of particles 
per unit volume, 21 and R o are the particle length and radius, respectively, and 

h = [2N/] - 1/2 [4.2] 

is a measure of the distance between particles. Equation [4.1] has the appropriate asymp- 
totic forms, approaching either the dilute-suspension or close-particle formula as the 
ratio h/l becomes large or small, respectively. For the suspensions of the present work, 
one calculates by [4.1], a tensile stress 8.4 times that of the suspending fluid, in reasonable 
agreement with the observed factors of 9 to 10 for total stress (figures 11 and 12 and 
table 2). The success of Batchelor's equation with these two suspensions leads us to expect 
similar success in experiments with varying particle concentration and length to width 
ratio. Unfortunately, we did not examine experimentally these other variables in the 
present work. 

It is interesting to observe that the extensional flow behavior of the polymer solutions 
and the fluid suspensions can be linked qualitatively. Each system exhibited high tensile 
stresses compared to the shearing stresses at the same deformation rates. For the polymer 
solutions, this could be caused by an orientation of the coiled molecules into elongated 
conformations, whereas for the suspensions it is almost certainly due to alignment of the 
rod-shaped particles parallel to the axis of extension. At any rate, both physical descriptions 
correspond to a situation where the specific contribution of the molecule or particle to the 
stress-state is greater in extension than in shear. 
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The search for such qualitative similarity between suspension and solution was actually 
one of the objectives of the present work. On the basis of this positive finding, an attempt 
was made to establish a degree of quantitative similarity. The dilute suspension form of 
[4.1] was applied to the polymer solutions, with particle parameters estimated roughly 
from bond angles and molecular dimensions for fully extended chains. It is rather surprising 
to find that for both polymer solutions the calculated stresses agree to within 20 per cent 
of those observed at an arbitrarily chosen extension rate of approximately 1 sec- 
(Weinberger 1970). 

In view of the observed non-linear behavior of the polymer solutions and the obvious 
limitations on the rigid-particle suspension model, no attempts were made to further 
refine the above calculation. 

5. C O N C L U S I O N S  

Our measurements on spinning filaments of polymer solutions and elongated-particle 
suspensions lend much support to the notion that orientation effects in extensional motions 
should lead to much larger stress contributions, from elongated macromolecules in solution 
or particles in suspension, than for simple shearing flows. 

Moreover, we have been able to correlate quantitatively stress versus strain-rate for 
essentially all our spinning experiments on these fluids, in contrast to the previous work of 
Zidan (1969) on similar polymer solutions. This may well be due to a particularly repro- 
ducible history in the spinning experiments reported here, since most of our data correspond 
approximately to constant-force spinning conditions. At any rate, it appears to be possible 
to eliminate the influence of other variables such as eductor diameter or other die effects. 

Experiments by one of the authors (J. D. G.) are now in progress to investigate the 
dynamical optical properties of polymer solutions in spinning, in order to provide further 
evidence of molecular orientation. The present findings suggest that some refinements on 
the elongated particle model might provide a fairly accurate description of molecular 
configuration and stress contributions in extension flows, at least for solutions of polymer in 
Newtonian solvents. If so, this type of flow could offer some interesting possibilities for 
investigation of the morphological features and optical properties of individual macro- 
molecules in a well-defined, perhaps near fully-extended state of orientation. In this regard, 
there is every motivation for attempting higher rates of strain than those obtained here. 

In the interpretation of our experiments, we have tried here to suggest some criteria for 
the dynamical conditions necessary to obtaining reproducible historiest and hence, 
rheological tests in the spinning experiment. As pointed out in that connection, it would be 
interesting and perhaps practically useful to consider this question in more detail. 

Acknowledgement--The authors are indebted to Dr. F. A. Kanel, of the University of 
Delaware, Department of Chemical Engineering, for private discussions with one of us 
(C. B. W.) on the interpretation of the spinning experiment. The notion of "monogenic" 
extensions developed here in Section 2.1 represents, to a degree, an extension and 
elaboration on an idea which, we understand, is to be found in his recent Doctoral 
Dissertation (Kanel 1972). 

t See the A c k n o w l e d g e m e n t .  
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Sommaire -Le ill6 mecanique de filaments fluides a et6 utilise pour la g~n6ration d 'un  ecoulement 
extensionel dans lequel des mesures rh6ologiques ont et6 obtenues pour un fluide Newtonien, 
deux solutions aqueuses de polym6res, et deux suspensions en fluide de particules en forme de 
b~tonnets. La contrainte en traction a 6t6 d6terminee en mesurant  les forces de traction du 
filament fluide alors que la cin6matique a 6t6 d6termin6e & partir de mesures photographiques du 
profil6 du filament et de la supposition que le profil de v61ocit6 est plat. Les contraintes de traction 
mesurees pour le fluide Newtonien &aient semblables aux contraintes pr6vues, confirmant ainsi 
la validit6 de la technique exp6rimentale. 

Lc comportement  m6canique de chaque solution de polym~res a pu 6tre representee comme 
contrainte en fonction du taux d'extension. La "viscosit6 de ill6" apparente augmentait  en m~me 
temps que le taux d'extension, en contraste au comportement  en cisaillement dans un 6coulement 
viscometrique. Pour les suspensions en fluide, la presence de particules en forme de b~tonnets 
augmente la viscosite apparente bien d 'advantage dans l 'ecoulement extensionel qu 'en cisaillement. 
Les tractions calcul6es d 'une formule theorique pour les suspensions proposee par Batchelor ont 
montrt~ un bon accord avec l'experience. Quelques crit~res g6neraux pour l 'interpretation de 
Vexp6rience de file sont proposes, et quelques implications microrh6ologiques des decouvertes 
prcsentes sont discut~es. 

Auszug--  Es wurde ein mechanischer Spinnung von Flfissigkeitsfiiden zur Schaffu ng eines Ausstreck- 
ungsflusses benutzt, in welchem rheologische Messungen fi, ir eine Newton'sche Fltissigkeit, zwei 
w/il3rige PolymerlSsungen und zwei Flfissigkeitssuspensionen von stabf6rmigen Partikeln erhalten 
wurden. Die Zugfestigkeit wurde durch Messung der Zugkraft  des Fliissigkeitsfadens bestimmt, 
w/ihrend die Kinematik aus der photographischen Messung des Fadenprofils und unter der 
Voraussetzung eines flachen Geschwindigkeitsprofils best immt wurden. Die gemessenen Zug- 
festigkeiten ffir die Newton'sche Flfissigkcit waren den vorausgesagten Spannungen angepal3t, und 
die Gfiltigkeit des experimentellen Verfahrens best/itigte sich daher. 

Das Spinnungverhalten jeder Polymerl6sung konnte als Spannungsgrad versus Ausstreckungs- 
grad in Verbindung gebracht werden. Die scheinbare "Dehnviskosit/it '" stieg mit Vergr613erung des 
Ausstreckungsgrades,  im Gegensatz zu der Verdfinnung des Scherverhaltens im viskometrischen 
Flul3. Bei Flfissigkeitssuspensionen stieg die scheinbare Viskosit~it bei Vorhandensein yon stab- 
f6rmigen Partikeln welt mehr im Ausstreckungsflul3 als im ScherfluB. Aus theoretischen Formeln 
ffir Suspensionen nach Vorschlag yon Batchelor errechnete Zugfestigkeiten s t immten ziemlich 
gut mit dem Experiment fiberein. Es werden einige allgemeine Kriterien zur Ausdeutung der 
Spinnprozesse vorgeschlagen, und es werden einige mikrorheologische Begleiterscheinungen 

der vorhandenen Ergebnisse besprochen. 

Pe31oMe MexaHHqeCKHM apameHHeM cTpy~ )KH;IKOC, TH reHiepHpoBaJqH paCT~HMbI~ nOTOK, npH 
qeM IIpOBO.22FIflFICb peo~lorHqecKHe r~3MepeHna HblOTOHOBCKO~I TeKyqe~ cpe~lbl, HCHOSIb3OBaYlHCb 
;IBa BO~q[HblX pacTBopa no.anMepa, H ~IBe ~H,~KHe cycneH3FIH I~a.~oqKoo6pa3HHblX qaCTHU. 
PacTarHaaroiilee Hanp:a~eHHe onpe~le~a~OCb ~43MepeHHeM CHJIbI paCT~KeHna cTpyr~ TeKyqe.~ 
cpe:lbL a KHHeMaTHKa onpeaenanacb no qboTorpaqbnqecKoMy H3Mepennro npoqbaaa cxpyH H 
Hpexno~eHHeM o II,aOCKO~ 3urope cKopocTe~, ld3MepeHHble pacTarHaarotttHe Har~p~DKeHH~ 
H btO I OttOBCKO.~ reKyqe~ cpe;Ibl COOTBeTCTBOBaJqH l~pe;IcKa3aHHb~M HaIIpgoKeHH~M, qTO 
IIO)ITBep~H_rlO O6OCHOBaHHOCI'b eKClICpHMeHTaSIbHO.~ TeXHHKH. 

npatttarexlbHOe noBe,zl.eHHe 060Hx nO.aHMepHblX pacTaopoa MO)KHO B3aHMHO CB~I3aTb KaK 
Koppe:latm~ Hanp:~eHrle: pacT~eHHe. OqeaH.a~qa~ B~I3KOCTb apanteHHa HOabImaeTca C 
yCKopeHHeM paCT~DKeHH~, B FIpOTItBOHOJ10)KHOCTb pa3pe~eHHOMy HOTOKy, Uo~Bep>KeHHOMy 
KacaTe3bHOMy Harlp~:.KeHI!4K) B BHCKO3~MeTpe. Ll'ro KacaeTca ~H/IK~x cycHeH3Hfl, Hpr~cyTCTBHe 
Ha~OqKOO6pa3HbIX qaCT~tl nOBb~L~aeT Ka~ymy~ocs B~I3KOCTb Ha MHOFO 60.~bLtle B paCT~r~MOM 
IIOI'OKe. qeM B pa3pe~eHHOM IIOTOKe. PacxarrlBarotttee rlanp~t~KeHHe pacc'aHTaHnoe no 
~eopeTHqecKolYl qbopMy.ae ,~5~a cyci,IeH3t,I~ IIO TeopeMe BaTqe.~opa ,~IOBO.1IbHO TOqHO COOTBeTCByeT 
3KcnepHMeH~y. Flpe,anaraeTcu o6mnfi KpnTepHfl Rnu nOflCHIenHfl 3KcnepnMeuxa apameHnu 
o6Cy'A<LlatoFc~I tleKOTOpble Mr~Kpopeo~oFr~qecKHe es~e,aCTB~ HaCTO~HI~X 3KcnepHMeHTa~bHblX 
,'tHIIIIbIX. 


